Use of physiologically based biokinetic (PBBK) modeling to study estragole bioactivation and detoxification in humans as compared to male rats.
Toxicol Sci. 2009 May 15; Punt A, Paini A, Boersma MG, Freidig AP, Delatour T, Scholz G, Schilter B, van Bladeren PJ, Rietjens IMThe extent of bioactivation of the herbal constituent estragole to its ultimate carcinogenic metabolite, 1'-sulfooxyestragole depends on the relative levels of both bioactivation and detoxification pathways. The present study investigated the kinetics of the metabolic reactions of both estragole and its proximate carcinogenic metabolite 1'-hydroxyestragole in humans in incubations with relevant tissue fractions. Based on the kinetic data obtained a PBBK model for estragole in human was defined to predict the relative extent of bioactivation and detoxification at different dose levels of estragole. The outcomes of the model were subsequently compared to those previously predicted by a PBBK model for estragole in male rat to evaluate the occurrence of species differences in metabolic activation. The results obtained reveal that formation of 1'-oxoestragole, which represents a minor metabolic route for 1'-hydroxyestragole in rat, is the main detoxification pathway of 1'-hydroxyestragole in humans. Due to a high level of this 1'-hydroxyestragole oxidation pathway in human liver, the predicted species differences in formation of 1'-sulfooxyestragole remain relatively low, with the predicted formation of 1'-sulfooxyestragole being 2-fold higher in human compared to male rat, even though the formation of its precursor 1'-hydroxyestragole was predicted to be 4-fold higher in human. Overall, it is concluded that in spite of significant differences in the relative extent of different metabolic pathways between human and male rat there is a minor influence of species differences on the ultimate overall bioactivation of estragole to 1'-sulfooxyestragole.
The Effects of Ginkgo Biloba Extract EGb 761 on Mechanical and Cold Allodynia in a Rat Model of Neuropathic Pain.
Anesth Analg. 2009 Jun; 108(6): 1958-63Kim YS, Park HJ, Kim TK, Moon DE, Lee HJBACKGROUND: Neuropathic pain is chronic pain that is caused by an injury to the peripheral or central nervous system. The symptoms of neuropathic pain are continuing pain, hyperalgesia, and allodynia. Ginkgo biloba extract is an oriental herbal medicine that has various pharmacological actions. We examined the effect of Ginkgo biloba extract, EGb 761, on the mechanical and cold allodynia in a rat model of neuropathic pain. METHODS: Male Sprague-Dawley rats were prepared by tightly ligating the left L5 and L6 spinal nerves. All the rats developed mechanical and cold allodynia 7 days after surgery. Fifty neuropathic rats were assigned into five groups for the intraperitoneal administration of drugs. The study was double-blind and the order of the treatments was randomized. Normal saline and EGb 761 (50, 100, 150, and 200 mg/kg) were administered, respectively, to the individual groups. We examined mechanical and cold allodynia at preadministration and at 15, 30, 60, 90, 120, 150, and 180 min after intraperitoneal drug administration. Mechanical allodynia was quantified by measuring the paw withdrawal threshold to stimuli with von Frey filaments of 1.0, 1.4, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 15.0, and 26.0 g. Cold allodynia was quantified by measuring the frequency of foot lift with applying 100% acetone. We measured the locomotor function of the neuropathic rats by using the rotarod test to reveal if EGb 761 has side effects, such as sedation or reduced motor coordination. RESULTS: The control group showed no differences for mechanical and cold allodynia. For the EGb 761 groups, the paw withdrawal thresholds to mechanical stimuli and withdrawal frequencies to cold stimuli were significantly reduced versus the preadministration values and versus the control group. The duration of antiallodynic effects increased in a dose-dependent fashion, and these were maintained for 120 min at the highest dose (P < 0.05). Only at the highest dose (200 mg/kg) did EGb 761 reduce the rotarod performance time. CONCLUSION: We conclude that Ginkgo biloba extract, EGb 761, attenuates mechanical and cold allodynia in a rat model of neuropathic pain, and it may be useful for the management of neuropathic pain.
Subscribe to:
Posts (Atom)